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A linear mean-square estimator optimum for data available only on
a finite interval is dgrived for the restoration of images degraded by a system
with a bandlimited ;préad function. The analysis is carried out in one
dimension using a prolate spheroidal wavefunction expansion of the image
process. If the noise is bandlimited to the same bandwidth as the spread
function, the expansion represents the image process with zero mean square
error on the entire interval, and the estimate of the geometrical image
achieves the same mean-square error as the optimum estimate for data on
the infinite interval. The rate at which the estimate converges is discussed

and an example presented.




A solution to the image restoration problem using linear mean-

yjuare estimation has been presented by Helstrom, L who demonstrated that
data are available over an infinite interval, Fourier methods could be
sed to obtain the restoring filter. Slepian has used the linear mean-
juare method to obtain a restoring filter optimum for data from a system
ith a stochastic spread function. 2 His method uses data only over a finite
2gion, but he does not assume that the system spread function is band-
mited, Other authors have recently presented solutions to the restoration
roblem for systems with bandlimited spread functions. 34,5

In this paper a restoring filter is derived that is optimum for data
vailable only over a finite interval. The analysis is performed in one
imension for simplicity; this imposes no fundamental limitation on the
:chnique. In the special case where the noise is bandlimited to the same
andwidth as the spread function, the optimum filter for data on the finite
iterval achieves the same minimum mean-square error as the optimum
lter for data on the infinite interval.

The analysis makes use of the fact that a bandlimited stationary
tochastic process known only over a finite interval can be estimated with
ero mean-square error at any point outside the interval. This can be done
y expanding the process in a series of prolate spheriodal wave functions

PSWF). A simple proof is given in the Appendix.



1. The Formulation of the Problem
The optical system will be modeled mathematically by the convolu-

onal integral equation
J(x) = f S(x-x'") JO(X‘)dX' + N(x). (1. 1)

D(X), the illﬁminance of the geometrical image, will be taken to be a zero-
iean stationary stochastic process with spectral density cpo(w) . S(x) is

1e point spread function of the system. The Fourier transform s(w) of

(x) is bandlimited to the spatial frequency (w) interval (-Q/2, Q/2 ). The
gstem noise N (x) is also a zero-mean stationary stochastic process in this
1iodel. It has spectral density cpN(w ), and for simplicity it is assumed to

e uncorrelated with the geometrical image. This model is discussed by
elstrom.

We assume that an experimenter has observed the image-plane
luminance J(x) over the finite interval (-L/2, L/2). His task is to use
i1ese data to form an estimate of the geometrical image JO( x )} at some
oint €. He does so by performing a linear operation on the available "
ata that minimizes. the mean-square error. Hence, he must find a weighting

inction M (§, x) such that

A L/2
J (8) =J M(E, x')J(x')dx! (1.2)
-L/2

ainimizes



¢ (§)=E [lJo(g) - 30(§>|2]. (1.3)

ilere E denotes mathematical expectation.

At this point we could proceed by formal methods to obtain an
ntegral equation for M(E, x). There is, however, an alternative procedure
hat makes use of the optimum filter for data on the infinite interval derived
W Helstroml. First it will be necessary to establish’ some properties
f the PSWF's, There are taken directly from Slepian and Pollak, 6

The PSWF's are solutions of the integral equa‘cion7

./2 . 1 .

I SmEQ(X—X)‘i’ ( ) d (c) ¥ ) (1.4)
c,x')dx' = A (c {c,x 1.

~1./2 (- x1) n n n

vhere ¢ =Q1./4 . We will make use of the following two properties of the
PSWE's:

PROPERTY I. The PSWE's Yn (c,x) form a complete orthonormal
»asis for the class of bandlimited functions,

PROPERTY II, The PSWEF's ‘i’n(c,x) are orthogonal over the

nterval (-L/2, L/2) with

L/2 2
[ Iy x| ax=2 (o).
_L/2 n n

They form a complete orthogonal basis for the class of functions square

integrable on the x-interval (-L/2, L/2).



he following equation will also be used,
-n L1
i (27L/Q)%x "Fc) ¥ (c,Lw/Q) o] <q/2
n

J‘yn (c,x)e P ¥ dx = 05072
G0 0 w|>0Q

(1.5)

2. The Solution for Noise Bandlimited to (- Q/2, Q/2)

If the noise N(x) is bandlimited to the interval (-Q /2, Q/2), J(x) is
rom Eq. (1.1) a bandlimited process. Now if J(x) is available only over
he finite interval (-L/2, 1./2), it can be estimated with zero mean-square

»rror at any point by its PSWF expansion. This is proved in the appendix.

Jence
E(X): y J Y (e,x), (2.1)
n=o0
vhere
L/2
T = ‘[L/Z T ¥ (e, x') dx' /A _(c) , (2.2)

represents J(x) with zero mean-square error for all x. For the purpose of
inear mean-square estimation Tf(x) is equivalent to J(x). Hence the restoring

ilter for data on the infinite interval can be applied to (2.1). We have

«© [}

So(g) = J’, Mm(g-X‘)}(X') dx! = z Jn J' Moo(g-x') Yn(c’X' )dx!
o] n:o - CO (203)



9
ere 0 /2 .
s (w)p (w) )
M_(x) = > 2 et aw/am, (2. 4)
sy ] ()t el
_0/2 o N

5" (we, (u

q(w) = (2.5)

() [* g @)+ gy

r using Eq. (1.5) and the convolution relation for Fourier transforms,

1. (2.3) can be simplified to

ool

~ i 4
- RN -)
J (§) = (2nL/Q)% ; A ()M (EM (2. 6)
n=0
Q/2
here Mn(g) = l:i_n/Kn(c)]/q(w)‘i’n(c, Lw/Q)e iu‘)gdu.)/ 21, (2.7)
-Qf2

The minimum mean square error achieved by this estimate is

" Q/2 lcpo(w)s*(w”.z \
¢ :/ o (w)dw/ 2 ./ > dw/ 21 (2. 8)
w /2 0 (o st | e lw)

his can be verified by substituting Eq. (2.6) into Eg. (1.3). Note that

1 the analysis it was not necessary to assume that Jo(x) itself was band-
mited. Also, Eq. (2.8) is (as it must be from the analysis) the minimum
10

riean-square error achieved by Mm(x) operating on J(x).
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The fact that ¢ is independent of € suggests that Eq. (2.6) could
e used to estimate the illuminance of the geometrical image in the entire
lane when image-plane data are available only over the finite interval,
'he practical difficulties in actqally carrying this out are, however,

ormidable. 'They will be discussed in section 4.

3. The General Solution and its Mean Square Error

When the noise term in Eq. (1.1) is not bandlimited to (-Q/2, (Q/2),
he series of Eq. (2:1) no longer represents J(x) outside the interval
-L/2, L/2). Itis, however, only the noise term in Eq. (1.1) that is not
epresented outside the interval (-L/2, 1./2). One might suspect from
his that Eq. (2.6) is still the optimum estimate. This is in fact correct.
t can be established by showing that Eq. (2.6) does indeed still minimize
ig. (1.3). Now, unfortunately, the mean-square error is no longer inde-
rendent of €. It contains a §-dependent term that results from the imper-
ect representation of N(x) outside (-L/2, L/2).

The mean square error can be written in the following form, Wl;ich
lisplays the contribution of the various terms. The function

1 |w|=s1

W (w) =
0 1wl>1

s used for notational convenience.



U2 g (e

Q(g) :/ 2
/2 |s(w)] cPO(<1>)+cpl\T(uu)

dw/ 27

o«

+/ [1 -W(Zw/Q)]cpo(w)dw/Zn

@

vhere

Q/2

Ho) = =5~ Z / q(w')¥ (c, Lo /oyet o g(dw' /ZTT)‘F,H(C, Lw/Q) .

n=0 J.Q/2

+/ [1-W(2w/)] ]| £(w) lchN(w)dw/ZTT .

(3.1)

(3.2)

Again this result can be derived by substituting Eq. (2.6) into Eq. (1. 3)

vith due regard for the different limits involved. The first term in Eq. (3. 1)

s the minimum mean-square error achieved when both the geometrical

mage and the noise are bandlimited to (-Q/2, Q/2).
erms represent respectively the contributions of the object process
spectrum and the noise spectrum outside the bandwidth of the spread

unction. From Eq. (3.2) the third term is £-dependent.

8

The second and third



4. Practical Aspects of the Solution

For applications we need to know the rate at which Eq. (2.6) con-
‘erges, since only a finite number of terms can be evaluated. Unfortunately
his rate is strongly dependent on § even though the E-dependence of the
nean square error Eq. (3.1) might be small. This can be seen as follows.

A comparison of Eq. (1.2) and Eq. (2.6) leads to the conclusion

hat

@

M(E, x) = (2wL/Q) )N

n=0

L
2

ol

(c)Mn(’é)Yn(c,x). (4.1)

f M(§, x) is represented with negligible error by N terms in the series (4. 1),

N

~ i L
T (8 = (2mL/0) Zoxnz(c)Mn(g)Jn (4. 2)
n=

nust achieve a mean-square error close to the minimum possible error
yiven by Eq. (3.1). Hence consider

L/2 :
= anL/o)f ¥ A B ¥ 2
on(® = [ M x-@nL/9® ) A "EeM ()Y (e, x)| “ax
-L/2 n=0
L/2

-t 2
| ) 2 EM_(B)Y (e, x| “ax
_L/2n=N+1

2Tl
Q



- 2
:%’Z M, (9] (4. 3)
n=N+1

q(g) is the mean-square error {(not to be confused with the statistical

ean square error) that results when only N terms are used in Eq (4. 1).
We now want to know when sN(g) is small. This is determined by

e behavior of Mn(g). Now for most applications q(w) is a slowly varying

nction of w. From Eq. (2.7), then, the gross behavior of |Mn(§)| is

roportional to

L/2
(m (c))‘ ¥ (c, 290 195 gy 2n
n n L
-1./2

L
ut from Eq. (1.5) this is proportional to )\nz(c) I‘lfn(c, w)l. In Fig. 1
(c,x) is plotted for ¢ = 8 for n =40, 5, and 8. The behavior of ‘i’n(c,x)
1

easily understood when we recall that ?\n(c) represents the fraction of

€ total energy in the n-th PSWF that is in the interval (-L/2, L/2).

. 6 11
epian and Pollak have shown that for n <n ., Where 'n ..o= [2¢/m],
crit crit

~ > ~ 0. i i i i
1(c) ~ 1, and for n N e ?xn(c) ~ 0. This behavior is clearly displayed

+ Fig. 1. From this we conclude that for N > n 5N(g) will be small

crit’
N

T |§| <L/2, JON(g) will achieve a minimum mean-square error close

» the theoretical value given by Eq. (3.1) for the same N and range of E.
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T |g| > L./2 terms of increasing order will be necessary.

5. An Example

To test the solution 1024 data points in the interval (-1, 1) were

mputed by first convolving the geometrical image function

Jé(x) = (Zﬂcz)_%{exp [-(X-M)Z/ZO'Z:]-i- eXp[—(X-I-M)Z/ZGZ]} (5. 1)

th a spread function for a slit-diffracted image. The Fourier transform

the spread function is

1—210)1/0 leSQ/Z
s(w) = {5.2)
0 |w|>Q/2.

dependent, zero-mean gaussian random variates, Nk and Nk‘ were then

lded according to the formula

2 2
+ Nk) + Nk' 1=, (5. 3)

-

J, = [(Jok* S

k k

'he asterisk means convolution,) The convolution was carried out by
sing the Cooley-Tukey Fourier transform algorithm on a CDC 3600
gital computer. The normal variates were computed from a pseudo-
indom number sequence by standard methods. Data so constructed
olate our initial assumptions of stationarity and additive noise. The

ita are, however, non-negative and serve to represent a simple geometrical
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1age.
The coefficients J'n were calculated using Simpson's rule for n =0
rough 8 with ¢ = 8. The PSWF's were computed by using a Liegendre
lynomial expansion with tabulated coefficients from Stratton et al.
1e PSWF's were normalized to correspond to Slepian and Pollak's def-
itions. 6 The eigenvalues ?\n(c) are tabulated.
To evaluate the weights Mn(g), Lpo(w) and tpN(m) must be specified. In
e absence of any prior information they can be taken to be constant on

; 14
e interval (-Q/2, Q/2). With these assumptions, by Eq. (2. 5),

1-2|w|/Q
(1-z|wl/Q)2+B

q{w) = (5.4)
. . . .15
here B is a constant that depends on the signal-to-noise ratio. Now
om Eq. (2.6) Mn(g) is just i-n/?\n(c) times the inverse Fourier transform
"q(wly (e, w).
n

With data on the interval (-1,1) and c = QL/4 = 8, Q = 16. By
sing these parameters the weights Mn(g) were calculated for n = 0
rough 8 using the Cooley-Tukey algorithm. The series (4. 2) was then
raluated with 9 terms and the results plotted on a Calcomp automatic
otter. An example with 0= 0.4, M= 1.0 and B = 0.5 is reproduced

| Fig. 2.
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6. Discussion

The example demonstrates that the estimate given by Eq. (4.2) works
ell for a deterministic function. The reason for this is clear if we observe
\at with B equal to zero in Eq. (5.4), Eq. (2.5) results from the analytic
sntinuation of the function J(x) to the infinite interval followed by the
sconvolution of Eq. (1. 1) with N(x) = 0. This can be carried out as long
5 JO(X) is effectively ba‘ndlimitéd to (-Q/2, Q/2), as was the case in the
xample.

If, on the other hand, the Fourier transform of Jo(x) is much
roader than Q, JOkX) will normally be nearly zero outside (-L/2, L/2).
"data were available on the infinite interval, we would have the conditions
)r attempting super-resolution. We know, however, that super-resolution
s frustrated by the slightest amount of noise. 3. 4,5 In the estimate given
y Eq. (4. 2) the resolution is limited to that allowed by the bandwidth of
1e spread function. [Recall section 4 and the fact that the PSWF's
1iemselves are bandlimited to (-Q/2, Q/2)] Hence for super-resolution
1ere is nothing new.

The conclusion seems to be that although super-resolution is not
ossible when noise is present, extension of an image a small distance

utside a finite interval is possible.
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Appendix

The Spheroidal Wavefunction Expansion of
Bandlimited Stationary Stochastic Processes
A stationary stochastic process X(x) is bandlimited if its spectral
asity is non-zero only over a finite interval., Let the covariance function

the process be K(x). Since

| Q/2
K(x) = | olw)el ®de/2m,
-Q/2

ere o(w) is the spectral density of the process, K(x) is a bandlimited
iction. Because of properties I and II of the PSWEF's (Sec. 1.), the

WEF expansion1

Kx-x') = E [XEX(x')] = ) B_(x")¥ (c,x), (A1)
n=0
ere
L/2
B (x') = K(x'-x")¥ (c,x") dx"/\ (c) (A2)
n n n
“1./2

nverges in the mean of order two for -» <x <« with x' fixed. For a

al process K(x-x') = K(x'-x). Hence we also have convergence in the



1ean of order two for -» <x' < o with x fixed.
Now from Eq. (l.4) the PSWEF's are eigenfunctions of the Hermitian

1itegral operator

L/2
in & 3¢t
Ly(x) :/ sin 5 Q(x-x') y(x')dx!, - <x < @, (A3)

m(x-x")
-L/2

foreover, the kernel of Eq. (A3) is square integrable over the unbounded
quare -® <x,x' <®, and there exists a positive dominating constant M

uch that

<]

in £ Ox-x! 2

m{x-x')

-0
or -®» <x <, In fact we have strict equality in (A4) with M = Q/2n. We
urther observe that any function z(x) bandlimited to (-3 Q, 3 Q) can be written

/2
131y R
2(x) = / sin g Ax-x') oiryaxe (A5)
ZLJ2 )

m{x-x")

/here y is a function square integrable over (-L/2, L/2), The represen-
ation in Eq, (AS) and the Hermitian property of the operator L are suf-
icient to establish the pointwise convergence of the series in Eq. (Al) for
o <x <o and x' fixed. The additié\txiatal propetty, Eq. (A4), of the kernel

nsures that the convergence is unifc\rm for - ®» <x <o and x' fixed, 17

ii
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rain, from the symmetry of K(x-x') the convergence is pointwise and
iform in x' as well as x.

We can now prove the following theorem.

TIEOREM: The PSWEF expansion of the process X(x)

X(x) = z a ¥ (c,%) (A6)
n=0
1iere
L/2
a = X(x! )‘Fn(c, x!' )dx! /?\n(c) (A7)

-L/2

mverges in the mean for all x, i.e.

N
g:rz E HX(X)‘ z an(C:X)‘Z:I =0 Vxe(-», »)
n=0
roof: Let
N
XN(X) = Z a ¥ (c,x)
n=0
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o ELXe X 60]%] = BLXe | “3-2 % BIK (ox69]
(A8)
L3
* oo ELIE O] ‘.
‘ow
) 2
E [[X()]"7 = K(0),
nd (A9)
E [X (0X(x)]= ) E[a X)]Y (c,x).
n=0
jut from Eq. (A7) and Eq. (A2)
L/2
E[a X(x")] = Kx' -x")¥ (c,x")dx"/} (c)
~L/2
(10)
=g, (x')
Jsing the pointwise convergence of the series in Eq. (Al)
0 (R (X)) = ) ¥ -
Now = [X#HXx)]= ) B KV (c,x)=K(0) (A11)

n=0

iv



o evaluate the last term in Eq. (A8) consider

N N
ELX X x)]1=) ) Elaa 1Y (0¥ _(c,x') (Al2)

N
m=0 n=0
sing Eq. (A7) and Eq. (A10)
L/2
E [anam] = E [a_nX(x”)]‘i’m(c,x")dx"/)\m(c)
-1./2
(Al13)
L/2
= Bn(xu) ‘i"m(C,X”)dX”/)\m(C)
-L./2
ow
w o L/2
° ~ 2
“m 1% eal®1= Y Y [ B ey e xnaaa @Y (e, 0¥ (e,
m=0 n=0 | J.1,/2
® 1./2 o .
= z f ZB (x"MY (c,x)¥ (c,x")dx"/r_(c)|¥ (c,x)
. n n m m m
m=0|Y-1,/2 n=0

'he interchange of summeation and integration is justified by the uniform
onvergence of the series in Eq. (Al). By using Eq. (AZ2) this can be

irther simplified to



- L/2

Z K(x-x")¥ (c,xMdx"/\A (c)]¥ (c,x)
m m m
m=0 -L/2

=) B_(aY_ (e.x)

m=0

mally using the pointwise convergence of the series in Eq. (Al)

Lim I~ 2.

>w substituting Eq. (Al4), Eq. (All), and Eq. (A9) into Eq. (AS8)

™ B XK1= 0  vxe(-=, =)

Q. E. D,

ste that from Eq. (Al13) the coefficients a_are in general correlated.
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Figure Captions

Prolate spheroidal wave functions for ¢ =8, n=10, 5, 8.

Geometrical image, computed data, and geometrical image

estimate with 0. = 0.4, M = 1.0, and B = 0. 5,
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